// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Package fixed implements fixed-point integer types.
package fixed // import "golang.org/x/image/math/fixed" import ( ) // TODO: implement fmt.Formatter for %f and %g. // I returns the integer value i as an Int26_6. // // For example, passing the integer value 2 yields Int26_6(128). func ( int) Int26_6 { return Int26_6( << 6) } // Int26_6 is a signed 26.6 fixed-point number. // // The integer part ranges from -33554432 to 33554431, inclusive. The // fractional part has 6 bits of precision. // // For example, the number one-and-a-quarter is Int26_6(1<<6 + 1<<4). type Int26_6 int32 // String returns a human-readable representation of a 26.6 fixed-point number. // // For example, the number one-and-a-quarter becomes "1:16". func ( Int26_6) () string { const , = 6, 1<<6 - 1 if >= 0 { return fmt.Sprintf("%d:%02d", int32(>>), int32(&)) } = - if >= 0 { return fmt.Sprintf("-%d:%02d", int32(>>), int32(&)) } return "-33554432:00" // The minimum value is -(1<<25). } // Floor returns the greatest integer value less than or equal to x. // // Its return type is int, not Int26_6. func ( Int26_6) () int { return int(( + 0x00) >> 6) } // Round returns the nearest integer value to x. Ties are rounded up. // // Its return type is int, not Int26_6. func ( Int26_6) () int { return int(( + 0x20) >> 6) } // Ceil returns the least integer value greater than or equal to x. // // Its return type is int, not Int26_6. func ( Int26_6) () int { return int(( + 0x3f) >> 6) } // Mul returns x*y in 26.6 fixed-point arithmetic. func ( Int26_6) ( Int26_6) Int26_6 { return Int26_6((int64()*int64() + 1<<5) >> 6) } // Int52_12 is a signed 52.12 fixed-point number. // // The integer part ranges from -2251799813685248 to 2251799813685247, // inclusive. The fractional part has 12 bits of precision. // // For example, the number one-and-a-quarter is Int52_12(1<<12 + 1<<10). type Int52_12 int64 // String returns a human-readable representation of a 52.12 fixed-point // number. // // For example, the number one-and-a-quarter becomes "1:1024". func ( Int52_12) () string { const , = 12, 1<<12 - 1 if >= 0 { return fmt.Sprintf("%d:%04d", int64(>>), int64(&)) } = - if >= 0 { return fmt.Sprintf("-%d:%04d", int64(>>), int64(&)) } return "-2251799813685248:0000" // The minimum value is -(1<<51). } // Floor returns the greatest integer value less than or equal to x. // // Its return type is int, not Int52_12. func ( Int52_12) () int { return int(( + 0x000) >> 12) } // Round returns the nearest integer value to x. Ties are rounded up. // // Its return type is int, not Int52_12. func ( Int52_12) () int { return int(( + 0x800) >> 12) } // Ceil returns the least integer value greater than or equal to x. // // Its return type is int, not Int52_12. func ( Int52_12) () int { return int(( + 0xfff) >> 12) } // Mul returns x*y in 52.12 fixed-point arithmetic. func ( Int52_12) ( Int52_12) Int52_12 { const , = 52, 12 , := muli64(int64(), int64()) := Int52_12(<< | >>) += Int52_12(( >> ( - 1)) & 1) // Round to nearest, instead of rounding down. return } // muli64 multiplies two int64 values, returning the 128-bit signed integer // result as two uint64 values. // // This implementation is similar to $GOROOT/src/runtime/softfloat64.go's mullu // function, which is in turn adapted from Hacker's Delight. func muli64(, int64) (, uint64) { const ( = 32 = 1<< - 1 ) := uint64( >> ) := uint64( & ) := uint64( >> ) := uint64( & ) := * := * + >> := & := uint64(int64() >> ) += * return uint64() * uint64(), * + + uint64(int64()>>) } // P returns the integer values x and y as a Point26_6. // // For example, passing the integer values (2, -3) yields Point26_6{128, -192}. func (, int) Point26_6 { return Point26_6{Int26_6( << 6), Int26_6( << 6)} } // Point26_6 is a 26.6 fixed-point coordinate pair. // // It is analogous to the image.Point type in the standard library. type Point26_6 struct { X, Y Int26_6 } // Add returns the vector p+q. func ( Point26_6) ( Point26_6) Point26_6 { return Point26_6{.X + .X, .Y + .Y} } // Sub returns the vector p-q. func ( Point26_6) ( Point26_6) Point26_6 { return Point26_6{.X - .X, .Y - .Y} } // Mul returns the vector p*k. func ( Point26_6) ( Int26_6) Point26_6 { return Point26_6{.X * / 64, .Y * / 64} } // Div returns the vector p/k. func ( Point26_6) ( Int26_6) Point26_6 { return Point26_6{.X * 64 / , .Y * 64 / } } // In returns whether p is in r. func ( Point26_6) ( Rectangle26_6) bool { return .Min.X <= .X && .X < .Max.X && .Min.Y <= .Y && .Y < .Max.Y } // Point52_12 is a 52.12 fixed-point coordinate pair. // // It is analogous to the image.Point type in the standard library. type Point52_12 struct { X, Y Int52_12 } // Add returns the vector p+q. func ( Point52_12) ( Point52_12) Point52_12 { return Point52_12{.X + .X, .Y + .Y} } // Sub returns the vector p-q. func ( Point52_12) ( Point52_12) Point52_12 { return Point52_12{.X - .X, .Y - .Y} } // Mul returns the vector p*k. func ( Point52_12) ( Int52_12) Point52_12 { return Point52_12{.X * / 4096, .Y * / 4096} } // Div returns the vector p/k. func ( Point52_12) ( Int52_12) Point52_12 { return Point52_12{.X * 4096 / , .Y * 4096 / } } // In returns whether p is in r. func ( Point52_12) ( Rectangle52_12) bool { return .Min.X <= .X && .X < .Max.X && .Min.Y <= .Y && .Y < .Max.Y } // R returns the integer values minX, minY, maxX, maxY as a Rectangle26_6. // // For example, passing the integer values (0, 1, 2, 3) yields // Rectangle26_6{Point26_6{0, 64}, Point26_6{128, 192}}. // // Like the image.Rect function in the standard library, the returned rectangle // has minimum and maximum coordinates swapped if necessary so that it is // well-formed. func (, , , int) Rectangle26_6 { if > { , = , } if > { , = , } return Rectangle26_6{ Point26_6{ Int26_6( << 6), Int26_6( << 6), }, Point26_6{ Int26_6( << 6), Int26_6( << 6), }, } } // Rectangle26_6 is a 26.6 fixed-point coordinate rectangle. The Min bound is // inclusive and the Max bound is exclusive. It is well-formed if Min.X <= // Max.X and likewise for Y. // // It is analogous to the image.Rectangle type in the standard library. type Rectangle26_6 struct { Min, Max Point26_6 } // Add returns the rectangle r translated by p. func ( Rectangle26_6) ( Point26_6) Rectangle26_6 { return Rectangle26_6{ Point26_6{.Min.X + .X, .Min.Y + .Y}, Point26_6{.Max.X + .X, .Max.Y + .Y}, } } // Sub returns the rectangle r translated by -p. func ( Rectangle26_6) ( Point26_6) Rectangle26_6 { return Rectangle26_6{ Point26_6{.Min.X - .X, .Min.Y - .Y}, Point26_6{.Max.X - .X, .Max.Y - .Y}, } } // Intersect returns the largest rectangle contained by both r and s. If the // two rectangles do not overlap then the zero rectangle will be returned. func ( Rectangle26_6) ( Rectangle26_6) Rectangle26_6 { if .Min.X < .Min.X { .Min.X = .Min.X } if .Min.Y < .Min.Y { .Min.Y = .Min.Y } if .Max.X > .Max.X { .Max.X = .Max.X } if .Max.Y > .Max.Y { .Max.Y = .Max.Y } // Letting r0 and s0 be the values of r and s at the time that the method // is called, this next line is equivalent to: // // if max(r0.Min.X, s0.Min.X) >= min(r0.Max.X, s0.Max.X) || likewiseForY { etc } if .Empty() { return Rectangle26_6{} } return } // Union returns the smallest rectangle that contains both r and s. func ( Rectangle26_6) ( Rectangle26_6) Rectangle26_6 { if .Empty() { return } if .Empty() { return } if .Min.X > .Min.X { .Min.X = .Min.X } if .Min.Y > .Min.Y { .Min.Y = .Min.Y } if .Max.X < .Max.X { .Max.X = .Max.X } if .Max.Y < .Max.Y { .Max.Y = .Max.Y } return } // Empty returns whether the rectangle contains no points. func ( Rectangle26_6) () bool { return .Min.X >= .Max.X || .Min.Y >= .Max.Y } // In returns whether every point in r is in s. func ( Rectangle26_6) ( Rectangle26_6) bool { if .Empty() { return true } // Note that r.Max is an exclusive bound for r, so that r.In(s) // does not require that r.Max.In(s). return .Min.X <= .Min.X && .Max.X <= .Max.X && .Min.Y <= .Min.Y && .Max.Y <= .Max.Y } // Rectangle52_12 is a 52.12 fixed-point coordinate rectangle. The Min bound is // inclusive and the Max bound is exclusive. It is well-formed if Min.X <= // Max.X and likewise for Y. // // It is analogous to the image.Rectangle type in the standard library. type Rectangle52_12 struct { Min, Max Point52_12 } // Add returns the rectangle r translated by p. func ( Rectangle52_12) ( Point52_12) Rectangle52_12 { return Rectangle52_12{ Point52_12{.Min.X + .X, .Min.Y + .Y}, Point52_12{.Max.X + .X, .Max.Y + .Y}, } } // Sub returns the rectangle r translated by -p. func ( Rectangle52_12) ( Point52_12) Rectangle52_12 { return Rectangle52_12{ Point52_12{.Min.X - .X, .Min.Y - .Y}, Point52_12{.Max.X - .X, .Max.Y - .Y}, } } // Intersect returns the largest rectangle contained by both r and s. If the // two rectangles do not overlap then the zero rectangle will be returned. func ( Rectangle52_12) ( Rectangle52_12) Rectangle52_12 { if .Min.X < .Min.X { .Min.X = .Min.X } if .Min.Y < .Min.Y { .Min.Y = .Min.Y } if .Max.X > .Max.X { .Max.X = .Max.X } if .Max.Y > .Max.Y { .Max.Y = .Max.Y } // Letting r0 and s0 be the values of r and s at the time that the method // is called, this next line is equivalent to: // // if max(r0.Min.X, s0.Min.X) >= min(r0.Max.X, s0.Max.X) || likewiseForY { etc } if .Empty() { return Rectangle52_12{} } return } // Union returns the smallest rectangle that contains both r and s. func ( Rectangle52_12) ( Rectangle52_12) Rectangle52_12 { if .Empty() { return } if .Empty() { return } if .Min.X > .Min.X { .Min.X = .Min.X } if .Min.Y > .Min.Y { .Min.Y = .Min.Y } if .Max.X < .Max.X { .Max.X = .Max.X } if .Max.Y < .Max.Y { .Max.Y = .Max.Y } return } // Empty returns whether the rectangle contains no points. func ( Rectangle52_12) () bool { return .Min.X >= .Max.X || .Min.Y >= .Max.Y } // In returns whether every point in r is in s. func ( Rectangle52_12) ( Rectangle52_12) bool { if .Empty() { return true } // Note that r.Max is an exclusive bound for r, so that r.In(s) // does not require that r.Max.In(s). return .Min.X <= .Min.X && .Max.X <= .Max.X && .Min.Y <= .Min.Y && .Max.Y <= .Max.Y }