package ipv6

Import Path
	golang.org/x/net/ipv6 (on go.dev)

Dependency Relation
	imports 13 packages, and imported by 5 packages

Involved Source Files batch.go control.go control_rfc3542_unix.go control_unix.go dgramopt.go Package ipv6 implements IP-level socket options for the Internet Protocol version 6. The package provides IP-level socket options that allow manipulation of IPv6 facilities. The IPv6 protocol is defined in RFC 8200. Socket interface extensions are defined in RFC 3493, RFC 3542 and RFC 3678. MLDv1 and MLDv2 are defined in RFC 2710 and RFC 3810. Source-specific multicast is defined in RFC 4607. On Darwin, this package requires OS X Mavericks version 10.9 or above, or equivalent. # Unicasting The options for unicasting are available for net.TCPConn, net.UDPConn and net.IPConn which are created as network connections that use the IPv6 transport. When a single TCP connection carrying a data flow of multiple packets needs to indicate the flow is important, Conn is used to set the traffic class field on the IPv6 header for each packet. ln, err := net.Listen("tcp6", "[::]:1024") if err != nil { // error handling } defer ln.Close() for { c, err := ln.Accept() if err != nil { // error handling } go func(c net.Conn) { defer c.Close() The outgoing packets will be labeled DiffServ assured forwarding class 1 low drop precedence, known as AF11 packets. if err := ipv6.NewConn(c).SetTrafficClass(0x28); err != nil { // error handling } if _, err := c.Write(data); err != nil { // error handling } }(c) } # Multicasting The options for multicasting are available for net.UDPConn and net.IPConn which are created as network connections that use the IPv6 transport. A few network facilities must be prepared before you begin multicasting, at a minimum joining network interfaces and multicast groups. en0, err := net.InterfaceByName("en0") if err != nil { // error handling } en1, err := net.InterfaceByIndex(911) if err != nil { // error handling } group := net.ParseIP("ff02::114") First, an application listens to an appropriate address with an appropriate service port. c, err := net.ListenPacket("udp6", "[::]:1024") if err != nil { // error handling } defer c.Close() Second, the application joins multicast groups, starts listening to the groups on the specified network interfaces. Note that the service port for transport layer protocol does not matter with this operation as joining groups affects only network and link layer protocols, such as IPv6 and Ethernet. p := ipv6.NewPacketConn(c) if err := p.JoinGroup(en0, &net.UDPAddr{IP: group}); err != nil { // error handling } if err := p.JoinGroup(en1, &net.UDPAddr{IP: group}); err != nil { // error handling } The application might set per packet control message transmissions between the protocol stack within the kernel. When the application needs a destination address on an incoming packet, SetControlMessage of PacketConn is used to enable control message transmissions. if err := p.SetControlMessage(ipv6.FlagDst, true); err != nil { // error handling } The application could identify whether the received packets are of interest by using the control message that contains the destination address of the received packet. b := make([]byte, 1500) for { n, rcm, src, err := p.ReadFrom(b) if err != nil { // error handling } if rcm.Dst.IsMulticast() { if rcm.Dst.Equal(group) { // joined group, do something } else { // unknown group, discard continue } } The application can also send both unicast and multicast packets. p.SetTrafficClass(0x0) p.SetHopLimit(16) if _, err := p.WriteTo(data[:n], nil, src); err != nil { // error handling } dst := &net.UDPAddr{IP: group, Port: 1024} wcm := ipv6.ControlMessage{TrafficClass: 0xe0, HopLimit: 1} for _, ifi := range []*net.Interface{en0, en1} { wcm.IfIndex = ifi.Index if _, err := p.WriteTo(data[:n], &wcm, dst); err != nil { // error handling } } } # More multicasting An application that uses PacketConn may join multiple multicast groups. For example, a UDP listener with port 1024 might join two different groups across over two different network interfaces by using: c, err := net.ListenPacket("udp6", "[::]:1024") if err != nil { // error handling } defer c.Close() p := ipv6.NewPacketConn(c) if err := p.JoinGroup(en0, &net.UDPAddr{IP: net.ParseIP("ff02::1:114")}); err != nil { // error handling } if err := p.JoinGroup(en0, &net.UDPAddr{IP: net.ParseIP("ff02::2:114")}); err != nil { // error handling } if err := p.JoinGroup(en1, &net.UDPAddr{IP: net.ParseIP("ff02::2:114")}); err != nil { // error handling } It is possible for multiple UDP listeners that listen on the same UDP port to join the same multicast group. The net package will provide a socket that listens to a wildcard address with reusable UDP port when an appropriate multicast address prefix is passed to the net.ListenPacket or net.ListenUDP. c1, err := net.ListenPacket("udp6", "[ff02::]:1024") if err != nil { // error handling } defer c1.Close() c2, err := net.ListenPacket("udp6", "[ff02::]:1024") if err != nil { // error handling } defer c2.Close() p1 := ipv6.NewPacketConn(c1) if err := p1.JoinGroup(en0, &net.UDPAddr{IP: net.ParseIP("ff02::114")}); err != nil { // error handling } p2 := ipv6.NewPacketConn(c2) if err := p2.JoinGroup(en0, &net.UDPAddr{IP: net.ParseIP("ff02::114")}); err != nil { // error handling } Also it is possible for the application to leave or rejoin a multicast group on the network interface. if err := p.LeaveGroup(en0, &net.UDPAddr{IP: net.ParseIP("ff02::114")}); err != nil { // error handling } if err := p.JoinGroup(en0, &net.UDPAddr{IP: net.ParseIP("ff01::114")}); err != nil { // error handling } # Source-specific multicasting An application that uses PacketConn on MLDv2 supported platform is able to join source-specific multicast groups. The application may use JoinSourceSpecificGroup and LeaveSourceSpecificGroup for the operation known as "include" mode, ssmgroup := net.UDPAddr{IP: net.ParseIP("ff32::8000:9")} ssmsource := net.UDPAddr{IP: net.ParseIP("fe80::cafe")} if err := p.JoinSourceSpecificGroup(en0, &ssmgroup, &ssmsource); err != nil { // error handling } if err := p.LeaveSourceSpecificGroup(en0, &ssmgroup, &ssmsource); err != nil { // error handling } or JoinGroup, ExcludeSourceSpecificGroup, IncludeSourceSpecificGroup and LeaveGroup for the operation known as "exclude" mode. exclsource := net.UDPAddr{IP: net.ParseIP("fe80::dead")} if err := p.JoinGroup(en0, &ssmgroup); err != nil { // error handling } if err := p.ExcludeSourceSpecificGroup(en0, &ssmgroup, &exclsource); err != nil { // error handling } if err := p.LeaveGroup(en0, &ssmgroup); err != nil { // error handling } Note that it depends on each platform implementation what happens when an application which runs on MLDv2 unsupported platform uses JoinSourceSpecificGroup and LeaveSourceSpecificGroup. In general the platform tries to fall back to conversations using MLDv1 and starts to listen to multicast traffic. In the fallback case, ExcludeSourceSpecificGroup and IncludeSourceSpecificGroup may return an error. endpoint.go genericopt.go header.go helper.go iana.go icmp.go icmp_linux.go payload.go payload_cmsg.go sockopt.go sockopt_posix.go sys_asmreq.go sys_bpf.go sys_linux.go sys_ssmreq.go zsys_linux_amd64.go
Code Examples package main import ( "log" "net" "golang.org/x/net/ipv6" ) func main() { ln, err := net.Listen("tcp", "[::]:1024") if err != nil { log.Fatal(err) } defer ln.Close() for { c, err := ln.Accept() if err != nil { log.Fatal(err) } go func(c net.Conn) { defer c.Close() if c.RemoteAddr().(*net.TCPAddr).IP.To16() != nil && c.RemoteAddr().(*net.TCPAddr).IP.To4() == nil { p := ipv6.NewConn(c) if err := p.SetTrafficClass(0x28); err != nil { // DSCP AF11 log.Fatal(err) } if err := p.SetHopLimit(128); err != nil { log.Fatal(err) } } if _, err := c.Write([]byte("HELLO-R-U-THERE-ACK")); err != nil { log.Fatal(err) } }(c) } } package main import ( "log" "net" "golang.org/x/net/ipv6" ) func main() { c, err := net.ListenPacket("ip6:89", "::") // OSPF for IPv6 if err != nil { log.Fatal(err) } defer c.Close() p := ipv6.NewPacketConn(c) en0, err := net.InterfaceByName("en0") if err != nil { log.Fatal(err) } allSPFRouters := net.IPAddr{IP: net.ParseIP("ff02::5")} if err := p.JoinGroup(en0, &allSPFRouters); err != nil { log.Fatal(err) } defer p.LeaveGroup(en0, &allSPFRouters) hello := make([]byte, 24) // fake hello data, you need to implement this ospf := make([]byte, 16) // fake ospf header, you need to implement this ospf[0] = 3 // version 3 ospf[1] = 1 // hello packet ospf = append(ospf, hello...) if err := p.SetChecksum(true, 12); err != nil { log.Fatal(err) } cm := ipv6.ControlMessage{ TrafficClass: 0xc0, // DSCP CS6 HopLimit: 1, IfIndex: en0.Index, } if _, err := p.WriteTo(ospf, &cm, &allSPFRouters); err != nil { log.Fatal(err) } } package main import ( "log" "net" "golang.org/x/net/ipv6" ) func main() { c, err := net.ListenPacket("udp6", "[::]:5353") // mDNS over UDP if err != nil { log.Fatal(err) } defer c.Close() p := ipv6.NewPacketConn(c) en0, err := net.InterfaceByName("en0") if err != nil { log.Fatal(err) } mDNSLinkLocal := net.UDPAddr{IP: net.ParseIP("ff02::fb")} if err := p.JoinGroup(en0, &mDNSLinkLocal); err != nil { log.Fatal(err) } defer p.LeaveGroup(en0, &mDNSLinkLocal) if err := p.SetControlMessage(ipv6.FlagDst|ipv6.FlagInterface, true); err != nil { log.Fatal(err) } var wcm ipv6.ControlMessage b := make([]byte, 1500) for { _, rcm, peer, err := p.ReadFrom(b) if err != nil { log.Fatal(err) } if !rcm.Dst.IsMulticast() || !rcm.Dst.Equal(mDNSLinkLocal.IP) { continue } wcm.IfIndex = rcm.IfIndex answers := []byte("FAKE-MDNS-ANSWERS") // fake mDNS answers, you need to implement this if _, err := p.WriteTo(answers, &wcm, peer); err != nil { log.Fatal(err) } } } package main import ( "fmt" "log" "net" "os" "time" "golang.org/x/net/icmp" "golang.org/x/net/ipv6" ) func main() { // Tracing an IP packet route to www.google.com. const host = "www.google.com" ips, err := net.LookupIP(host) if err != nil { log.Fatal(err) } var dst net.IPAddr for _, ip := range ips { if ip.To16() != nil && ip.To4() == nil { dst.IP = ip fmt.Printf("using %v for tracing an IP packet route to %s\n", dst.IP, host) break } } if dst.IP == nil { log.Fatal("no AAAA record found") } c, err := net.ListenPacket("ip6:58", "::") // ICMP for IPv6 if err != nil { log.Fatal(err) } defer c.Close() p := ipv6.NewPacketConn(c) if err := p.SetControlMessage(ipv6.FlagHopLimit|ipv6.FlagSrc|ipv6.FlagDst|ipv6.FlagInterface, true); err != nil { log.Fatal(err) } wm := icmp.Message{ Type: ipv6.ICMPTypeEchoRequest, Code: 0, Body: &icmp.Echo{ ID: os.Getpid() & 0xffff, Data: []byte("HELLO-R-U-THERE"), }, } var f ipv6.ICMPFilter f.SetAll(true) f.Accept(ipv6.ICMPTypeTimeExceeded) f.Accept(ipv6.ICMPTypeEchoReply) if err := p.SetICMPFilter(&f); err != nil { log.Fatal(err) } var wcm ipv6.ControlMessage rb := make([]byte, 1500) for i := 1; i <= 64; i++ { // up to 64 hops wm.Body.(*icmp.Echo).Seq = i wb, err := wm.Marshal(nil) if err != nil { log.Fatal(err) } // In the real world usually there are several // multiple traffic-engineered paths for each hop. // You may need to probe a few times to each hop. begin := time.Now() wcm.HopLimit = i if _, err := p.WriteTo(wb, &wcm, &dst); err != nil { log.Fatal(err) } if err := p.SetReadDeadline(time.Now().Add(3 * time.Second)); err != nil { log.Fatal(err) } n, rcm, peer, err := p.ReadFrom(rb) if err != nil { if err, ok := err.(net.Error); ok && err.Timeout() { fmt.Printf("%v\t*\n", i) continue } log.Fatal(err) } rm, err := icmp.ParseMessage(58, rb[:n]) if err != nil { log.Fatal(err) } rtt := time.Since(begin) // In the real world you need to determine whether the // received message is yours using ControlMessage.Src, // ControlMesage.Dst, icmp.Echo.ID and icmp.Echo.Seq. switch rm.Type { case ipv6.ICMPTypeTimeExceeded: names, _ := net.LookupAddr(peer.String()) fmt.Printf("%d\t%v %+v %v\n\t%+v\n", i, peer, names, rtt, rcm) case ipv6.ICMPTypeEchoReply: names, _ := net.LookupAddr(peer.String()) fmt.Printf("%d\t%v %+v %v\n\t%+v\n", i, peer, names, rtt, rcm) return } } }
Package-Level Type Names (total 8)
/* sort by: | */
A Conn represents a network endpoint that uses IPv6 transport. It allows to set basic IP-level socket options such as traffic class and hop limit. genericOpt.Conn *socket.Conn HopLimit returns the hop limit field value for outgoing packets. PathMTU returns a path MTU value for the destination associated with the endpoint. RecvMsg wraps recvmsg system call. The provided flags is a set of platform-dependent flags, such as syscall.MSG_PEEK. RecvMsgs wraps recvmmsg system call. It returns the number of processed messages. The provided flags is a set of platform-dependent flags, such as syscall.MSG_PEEK. Only Linux supports this. SendMsg wraps sendmsg system call. The provided flags is a set of platform-dependent flags, such as syscall.MSG_DONTROUTE. SendMsgs wraps sendmmsg system call. It returns the number of processed messages. The provided flags is a set of platform-dependent flags, such as syscall.MSG_DONTROUTE. Only Linux supports this. SetHopLimit sets the hop limit field value for future outgoing packets. SetTrafficClass sets the traffic class field value for future outgoing packets. TrafficClass returns the traffic class field value for outgoing packets. func NewConn(c net.Conn) *Conn
A ControlFlags represents per packet basis IP-level socket option control flags. func NewControlMessage(cf ControlFlags) []byte func (*PacketConn).SetControlMessage(cf ControlFlags, on bool) error const FlagDst const FlagHopLimit const FlagInterface const FlagPathMTU const FlagSrc const FlagTrafficClass
A ControlMessage represents per packet basis IP-level socket options. // destination address, receiving only // hop limit, must be 1 <= value <= 255 when specifying // interface index, must be 1 <= value when specifying // path MTU, receiving only // next hop address, specifying only // source address, specifying only Receiving socket options: SetControlMessage allows to receive the options from the protocol stack using ReadFrom method of PacketConn. Specifying socket options: ControlMessage for WriteTo method of PacketConn allows to send the options to the protocol stack. // traffic class, must be 1 <= value <= 255 when specifying Marshal returns the binary encoding of cm. Parse parses b as a control message and stores the result in cm. (*ControlMessage) String() string *ControlMessage : expvar.Var *ControlMessage : fmt.Stringer
A Header represents an IPv6 base header. // destination address // flow label // hop limit // next header // payload length // source address // traffic class // protocol version (*Header) String() string *Header : expvar.Var *Header : fmt.Stringer func ParseHeader(b []byte) (*Header, error)
An ICMPFilter represents an ICMP message filter for incoming packets. The filter belongs to a packet delivery path on a host and it cannot interact with forwarding packets or tunnel-outer packets. Note: RFC 8200 defines a reasonable role model. A node means a device that implements IP. A router means a node that forwards IP packets not explicitly addressed to itself, and a host means a node that is not a router. icmpv6Filter.Data [8]uint32 Accept accepts incoming ICMP packets including the type field value typ. Block blocks incoming ICMP packets including the type field value typ. SetAll sets the filter action to the filter. WillBlock reports whether the ICMP type will be blocked.
An ICMPType represents a type of ICMP message. Protocol returns the ICMPv6 protocol number. ( ICMPType) String() string ICMPType : expvar.Var ICMPType : fmt.Stringer func (*ICMPFilter).Accept(typ ICMPType) func (*ICMPFilter).Block(typ ICMPType) func (*ICMPFilter).WillBlock(typ ICMPType) bool const ICMPTypeCertificationPathAdvertisement const ICMPTypeCertificationPathSolicitation const ICMPTypeDestinationUnreachable const ICMPTypeDuplicateAddressConfirmation const ICMPTypeDuplicateAddressRequest const ICMPTypeEchoReply const ICMPTypeEchoRequest const ICMPTypeExtendedEchoReply const ICMPTypeExtendedEchoRequest const ICMPTypeFMIPv6 const ICMPTypeHomeAgentAddressDiscoveryReply const ICMPTypeHomeAgentAddressDiscoveryRequest const ICMPTypeILNPv6LocatorUpdate const ICMPTypeInverseNeighborDiscoveryAdvertisement const ICMPTypeInverseNeighborDiscoverySolicitation const ICMPTypeMobilePrefixAdvertisement const ICMPTypeMobilePrefixSolicitation const ICMPTypeMPLControl const ICMPTypeMulticastListenerDone const ICMPTypeMulticastListenerQuery const ICMPTypeMulticastListenerReport const ICMPTypeMulticastRouterAdvertisement const ICMPTypeMulticastRouterSolicitation const ICMPTypeMulticastRouterTermination const ICMPTypeNeighborAdvertisement const ICMPTypeNeighborSolicitation const ICMPTypeNodeInformationQuery const ICMPTypeNodeInformationResponse const ICMPTypePacketTooBig const ICMPTypeParameterProblem const ICMPTypeRedirect const ICMPTypeRouterAdvertisement const ICMPTypeRouterRenumbering const ICMPTypeRouterSolicitation const ICMPTypeRPLControl const ICMPTypeTimeExceeded const ICMPTypeVersion2MulticastListenerReport
A Message represents an IO message. type Message struct { Buffers [][]byte OOB []byte Addr net.Addr N int NN int Flags int } The Buffers fields represents a list of contiguous buffers, which can be used for vectored IO, for example, putting a header and a payload in each slice. When writing, the Buffers field must contain at least one byte to write. When reading, the Buffers field will always contain a byte to read. The OOB field contains protocol-specific control or miscellaneous ancillary data known as out-of-band data. It can be nil when not required. The Addr field specifies a destination address when writing. It can be nil when the underlying protocol of the endpoint uses connection-oriented communication. After a successful read, it may contain the source address on the received packet. The N field indicates the number of bytes read or written from/to Buffers. The NN field indicates the number of bytes read or written from/to OOB. The Flags field contains protocol-specific information on the received message.
A PacketConn represents a packet network endpoint that uses IPv6 transport. It is used to control several IP-level socket options including IPv6 header manipulation. It also provides datagram based network I/O methods specific to the IPv6 and higher layer protocols such as OSPF, GRE, and UDP. payloadHandler.PacketConn net.PacketConn payloadHandler.rawOpt.RWMutex sync.RWMutex Checksum reports whether the kernel will compute, store or verify a checksum for both incoming and outgoing packets. If on is true, it returns an offset in bytes into the data of where the checksum field is located. Close closes the endpoint. ExcludeSourceSpecificGroup excludes the source-specific group from the already joined any-source groups by JoinGroup on the interface ifi. HopLimit returns the hop limit field value for outgoing packets. ICMPFilter returns an ICMP filter. IncludeSourceSpecificGroup includes the excluded source-specific group by ExcludeSourceSpecificGroup again on the interface ifi. JoinGroup joins the group address group on the interface ifi. By default all sources that can cast data to group are accepted. It's possible to mute and unmute data transmission from a specific source by using ExcludeSourceSpecificGroup and IncludeSourceSpecificGroup. JoinGroup uses the system assigned multicast interface when ifi is nil, although this is not recommended because the assignment depends on platforms and sometimes it might require routing configuration. JoinSourceSpecificGroup joins the source-specific group comprising group and source on the interface ifi. JoinSourceSpecificGroup uses the system assigned multicast interface when ifi is nil, although this is not recommended because the assignment depends on platforms and sometimes it might require routing configuration. LeaveGroup leaves the group address group on the interface ifi regardless of whether the group is any-source group or source-specific group. LeaveSourceSpecificGroup leaves the source-specific group on the interface ifi. LocalAddr returns the local network address, if known. Lock locks rw for writing. If the lock is already locked for reading or writing, Lock blocks until the lock is available. MulticastHopLimit returns the hop limit field value for outgoing multicast packets. MulticastInterface returns the default interface for multicast packet transmissions. MulticastLoopback reports whether transmitted multicast packets should be copied and send back to the originator. RLock locks rw for reading. It should not be used for recursive read locking; a blocked Lock call excludes new readers from acquiring the lock. See the documentation on the [RWMutex] type. RLocker returns a [Locker] interface that implements the [Locker.Lock] and [Locker.Unlock] methods by calling rw.RLock and rw.RUnlock. RUnlock undoes a single [RWMutex.RLock] call; it does not affect other simultaneous readers. It is a run-time error if rw is not locked for reading on entry to RUnlock. ReadBatch reads a batch of messages. The provided flags is a set of platform-dependent flags, such as syscall.MSG_PEEK. On a successful read it returns the number of messages received, up to len(ms). On Linux, a batch read will be optimized. On other platforms, this method will read only a single message. ReadFrom reads a payload of the received IPv6 datagram, from the endpoint c, copying the payload into b. It returns the number of bytes copied into b, the control message cm and the source address src of the received datagram. SetBPF attaches a BPF program to the connection. Only supported on Linux. SetChecksum enables the kernel checksum processing. If on is true, the offset should be an offset in bytes into the data of where the checksum field is located. SetControlMessage allows to receive the per packet basis IP-level socket options. SetDeadline sets the read and write deadlines associated with the endpoint. SetHopLimit sets the hop limit field value for future outgoing packets. SetICMPFilter deploys the ICMP filter. SetMulticastHopLimit sets the hop limit field value for future outgoing multicast packets. SetMulticastInterface sets the default interface for future multicast packet transmissions. SetMulticastLoopback sets whether transmitted multicast packets should be copied and send back to the originator. SetReadDeadline sets the read deadline associated with the endpoint. SetTrafficClass sets the traffic class field value for future outgoing packets. SetWriteDeadline sets the write deadline associated with the endpoint. TrafficClass returns the traffic class field value for outgoing packets. TryLock tries to lock rw for writing and reports whether it succeeded. Note that while correct uses of TryLock do exist, they are rare, and use of TryLock is often a sign of a deeper problem in a particular use of mutexes. TryRLock tries to lock rw for reading and reports whether it succeeded. Note that while correct uses of TryRLock do exist, they are rare, and use of TryRLock is often a sign of a deeper problem in a particular use of mutexes. Unlock unlocks rw for writing. It is a run-time error if rw is not locked for writing on entry to Unlock. As with Mutexes, a locked [RWMutex] is not associated with a particular goroutine. One goroutine may [RWMutex.RLock] ([RWMutex.Lock]) a RWMutex and then arrange for another goroutine to [RWMutex.RUnlock] ([RWMutex.Unlock]) it. WriteBatch writes a batch of messages. The provided flags is a set of platform-dependent flags, such as syscall.MSG_DONTROUTE. It returns the number of messages written on a successful write. On Linux, a batch write will be optimized. On other platforms, this method will write only a single message. WriteTo writes a payload of the IPv6 datagram, to the destination address dst through the endpoint c, copying the payload from b. It returns the number of bytes written. The control message cm allows the IPv6 header fields and the datagram path to be specified. The cm may be nil if control of the outgoing datagram is not required. *PacketConn : golang.org/x/net/bpf.Setter *PacketConn : github.com/pion/datachannel.ReadDeadliner *PacketConn : github.com/pion/datachannel.WriteDeadliner *PacketConn : github.com/pion/transport/v2/udp.BatchPacketConn *PacketConn : github.com/pion/transport/v2/udp.BatchReader *PacketConn : github.com/pion/transport/v2/udp.BatchWriter *PacketConn : github.com/prometheus/common/expfmt.Closer *PacketConn : io.Closer *PacketConn : sync.Locker func NewPacketConn(c net.PacketConn) *PacketConn func github.com/pion/mdns/v2.Server(multicastPktConnV4 *ipv4.PacketConn, multicastPktConnV6 *PacketConn, config *mdns.Config) (*mdns.Conn, error)
Package-Level Functions (total 4)
NewConn returns a new Conn.
NewControlMessage returns a new control message. The returned message is large enough for options specified by cf.
NewPacketConn returns a new PacketConn using c as its underlying transport.
ParseHeader parses b as an IPv6 base header.
Package-Level Constants (total 45)
const FlagDst ControlFlags = 8 // pass the destination address on the received packet
const FlagHopLimit ControlFlags = 2 // pass the hop limit on the received packet
const FlagInterface ControlFlags = 16 // pass the interface index on the received packet
const FlagPathMTU ControlFlags = 32 // pass the path MTU on the received packet path
const FlagSrc ControlFlags = 4 // pass the source address on the received packet
const FlagTrafficClass ControlFlags = 1 // pass the traffic class on the received packet
const HeaderLen = 40 // header length
Internet Control Message Protocol version 6 (ICMPv6) Parameters, Updated: 2018-03-09
Internet Control Message Protocol version 6 (ICMPv6) Parameters, Updated: 2018-03-09
Internet Control Message Protocol version 6 (ICMPv6) Parameters, Updated: 2018-03-09
Internet Control Message Protocol version 6 (ICMPv6) Parameters, Updated: 2018-03-09
Internet Control Message Protocol version 6 (ICMPv6) Parameters, Updated: 2018-03-09
Internet Control Message Protocol version 6 (ICMPv6) Parameters, Updated: 2018-03-09
Internet Control Message Protocol version 6 (ICMPv6) Parameters, Updated: 2018-03-09
Internet Control Message Protocol version 6 (ICMPv6) Parameters, Updated: 2018-03-09
Internet Control Message Protocol version 6 (ICMPv6) Parameters, Updated: 2018-03-09
Internet Control Message Protocol version 6 (ICMPv6) Parameters, Updated: 2018-03-09
Internet Control Message Protocol version 6 (ICMPv6) Parameters, Updated: 2018-03-09
Internet Control Message Protocol version 6 (ICMPv6) Parameters, Updated: 2018-03-09
Internet Control Message Protocol version 6 (ICMPv6) Parameters, Updated: 2018-03-09
Internet Control Message Protocol version 6 (ICMPv6) Parameters, Updated: 2018-03-09
Internet Control Message Protocol version 6 (ICMPv6) Parameters, Updated: 2018-03-09
Internet Control Message Protocol version 6 (ICMPv6) Parameters, Updated: 2018-03-09
Internet Control Message Protocol version 6 (ICMPv6) Parameters, Updated: 2018-03-09
Internet Control Message Protocol version 6 (ICMPv6) Parameters, Updated: 2018-03-09
Internet Control Message Protocol version 6 (ICMPv6) Parameters, Updated: 2018-03-09
Internet Control Message Protocol version 6 (ICMPv6) Parameters, Updated: 2018-03-09
Internet Control Message Protocol version 6 (ICMPv6) Parameters, Updated: 2018-03-09
Internet Control Message Protocol version 6 (ICMPv6) Parameters, Updated: 2018-03-09
Internet Control Message Protocol version 6 (ICMPv6) Parameters, Updated: 2018-03-09
Internet Control Message Protocol version 6 (ICMPv6) Parameters, Updated: 2018-03-09
Internet Control Message Protocol version 6 (ICMPv6) Parameters, Updated: 2018-03-09
Internet Control Message Protocol version 6 (ICMPv6) Parameters, Updated: 2018-03-09
Internet Control Message Protocol version 6 (ICMPv6) Parameters, Updated: 2018-03-09
Internet Control Message Protocol version 6 (ICMPv6) Parameters, Updated: 2018-03-09
Internet Control Message Protocol version 6 (ICMPv6) Parameters, Updated: 2018-03-09
Internet Control Message Protocol version 6 (ICMPv6) Parameters, Updated: 2018-03-09
Internet Control Message Protocol version 6 (ICMPv6) Parameters, Updated: 2018-03-09
Internet Control Message Protocol version 6 (ICMPv6) Parameters, Updated: 2018-03-09
Internet Control Message Protocol version 6 (ICMPv6) Parameters, Updated: 2018-03-09
Internet Control Message Protocol version 6 (ICMPv6) Parameters, Updated: 2018-03-09
Internet Control Message Protocol version 6 (ICMPv6) Parameters, Updated: 2018-03-09
Internet Control Message Protocol version 6 (ICMPv6) Parameters, Updated: 2018-03-09
Internet Control Message Protocol version 6 (ICMPv6) Parameters, Updated: 2018-03-09
const Version = 6 // protocol version